12#ifndef DUMUX_MULTIDOMAIN_FREEFLOW_COUPLING_MANAGER_CVFE_HH
13#define DUMUX_MULTIDOMAIN_FREEFLOW_COUPLING_MANAGER_CVFE_HH
20#include <dune/common/exceptions.hh>
21#include <dune/common/indices.hh>
22#include <dune/common/float_cmp.hh>
23#include <dune/geometry/referenceelements.hh>
60 template<std::
size_t id>
using SubDomainTypeTag =
typename Traits::template SubDomain<id>::TypeTag;
63 template<std::
size_t id>
using GridView =
typename GridGeometry<id>::GridView;
64 template<std::
size_t id>
using Element =
typename GridView<id>::template Codim<0>::Entity;
65 template<std::
size_t id>
using ElementSeed =
typename GridView<id>::Grid::template Codim<0>::EntitySeed;
66 template<std::
size_t id>
using FVElementGeometry =
typename GridGeometry<id>::LocalView;
67 template<std::
size_t id>
using SubControlVolume =
typename FVElementGeometry<id>::SubControlVolume;
68 template<std::
size_t id>
using SubControlVolumeFace =
typename FVElementGeometry<id>::SubControlVolumeFace;
69 template<std::
size_t id>
using GridVariables =
typename Traits::template SubDomain<id>::GridVariables;
70 template<std::
size_t id>
using ElementVolumeVariables =
typename GridVariables<id>::GridVolumeVariables::LocalView;
71 template<std::
size_t id>
using GridFluxVariablesCache =
typename GridVariables<id>::GridFluxVariablesCache;
75 using Scalar =
typename Traits::Scalar;
76 using SolutionVector =
typename Traits::SolutionVector;
78 using CouplingStencilType = std::vector<std::size_t>;
80 using GridVariablesTuple =
typename Traits::template TupleOfSharedPtr<GridVariables>;
82 using FluidSystem =
typename VolumeVariables<freeFlowMassIndex>::FluidSystem;
84 using VelocityVector =
typename SubControlVolumeFace<freeFlowMassIndex>::GlobalPosition;
85 using ShapeValue =
typename Dune::FieldVector<Scalar, 1>;
87 static_assert(std::is_same_v<VelocityVector, typename SubControlVolumeFace<freeFlowMomentumIndex>::GlobalPosition>);
89 struct MomentumCouplingContext
91 FVElementGeometry<freeFlowMassIndex> fvGeometry;
92 ElementVolumeVariables<freeFlowMassIndex> curElemVolVars;
93 ElementVolumeVariables<freeFlowMassIndex> prevElemVolVars;
97 struct MassAndEnergyCouplingContext
99 MassAndEnergyCouplingContext(FVElementGeometry<freeFlowMomentumIndex>&& f,
const std::size_t i)
100 : fvGeometry(std::move(f))
104 FVElementGeometry<freeFlowMomentumIndex> fvGeometry;
108 using MomentumDiscretizationMethod =
typename GridGeometry<freeFlowMomentumIndex>::DiscretizationMethod;
109 using MassDiscretizationMethod =
typename GridGeometry<freeFlowMassIndex>::DiscretizationMethod;
113 static constexpr auto pressureIdx = VolumeVariables<freeFlowMassIndex>::Indices::pressureIdx;
121 void init(std::shared_ptr<Problem<freeFlowMomentumIndex>> momentumProblem,
122 std::shared_ptr<Problem<freeFlowMassIndex>> massProblem,
123 GridVariablesTuple&& gridVariables,
124 const SolutionVector&
curSol)
126 this->momentumCouplingContext_().clear();
127 this->massAndEnergyCouplingContext_().clear();
129 this->
setSubProblems(std::make_tuple(momentumProblem, massProblem));
130 gridVariables_ = gridVariables;
133 computeCouplingStencils_();
137 void init(std::shared_ptr<Problem<freeFlowMomentumIndex>> momentumProblem,
138 std::shared_ptr<Problem<freeFlowMassIndex>> massProblem,
139 GridVariablesTuple&& gridVariables,
140 const SolutionVector&
curSol,
141 const SolutionVector& prevSol)
143 init(momentumProblem, massProblem, std::forward<GridVariablesTuple>(gridVariables),
curSol);
149 void init(std::shared_ptr<Problem<freeFlowMomentumIndex>> momentumProblem,
150 std::shared_ptr<Problem<freeFlowMassIndex>> massProblem,
151 GridVariablesTuple&& gridVariables,
154 this->momentumCouplingContext_().clear();
155 this->massAndEnergyCouplingContext_().clear();
157 this->
setSubProblems(std::make_tuple(momentumProblem, massProblem));
158 gridVariables_ = gridVariables;
161 computeCouplingStencils_();
174 Scalar
pressure(
const Element<freeFlowMomentumIndex>& element,
175 const FVElementGeometry<freeFlowMomentumIndex>& fvGeometry,
176 const SubControlVolumeFace<freeFlowMomentumIndex>& scvf,
177 const bool considerPreviousTimeStep =
false)
const
179 assert(!(considerPreviousTimeStep && !this->isTransient_));
190 Scalar
pressure(
const Element<freeFlowMomentumIndex>& element,
191 const FVElementGeometry<freeFlowMomentumIndex>& fvGeometry,
192 const SubControlVolume<freeFlowMomentumIndex>& scv,
193 const bool considerPreviousTimeStep =
false)
const
195 assert(!(considerPreviousTimeStep && !this->isTransient_));
206 Scalar
density(
const Element<freeFlowMomentumIndex>& element,
207 const FVElementGeometry<freeFlowMomentumIndex>& fvGeometry,
208 const SubControlVolumeFace<freeFlowMomentumIndex>& scvf,
209 const bool considerPreviousTimeStep =
false)
const
211 assert(!(considerPreviousTimeStep && !this->isTransient_));
212 bindCouplingContext_(Dune::index_constant<freeFlowMomentumIndex>(), element, fvGeometry.elementIndex());
216 const auto eIdx = fvGeometry.elementIndex();
217 const auto& scv = this->momentumCouplingContext_()[0].fvGeometry.scv(eIdx);
219 const auto& volVars = considerPreviousTimeStep ?
220 this->momentumCouplingContext_()[0].prevElemVolVars[scv]
221 : this->momentumCouplingContext_()[0].curElemVolVars[scv];
223 return volVars.density();
229 using ShapeValue =
typename Dune::FieldVector<Scalar, 1>;
230 const auto& localBasis = this->momentumCouplingContext_()[0].fvGeometry.feLocalBasis();
231 std::vector<ShapeValue> shapeValues;
232 const auto ipLocal = element.geometry().local(scvf.ipGlobal());
233 localBasis.evaluateFunction(ipLocal, shapeValues);
236 for (
const auto& scv : scvs(this->momentumCouplingContext_()[0].fvGeometry))
238 const auto& volVars = considerPreviousTimeStep ?
239 this->momentumCouplingContext_()[0].prevElemVolVars[scv]
240 : this->momentumCouplingContext_()[0].curElemVolVars[scv];
241 rho += volVars.density()*shapeValues[scv.indexInElement()][0];
247 DUNE_THROW(Dune::NotImplemented,
248 "Density interpolation for discretization scheme " << MassDiscretizationMethod{}
255 Scalar
density(
const Element<freeFlowMomentumIndex>& element,
256 const FVElementGeometry<freeFlowMomentumIndex>& fvGeometry,
257 const SubControlVolume<freeFlowMomentumIndex>& scv,
258 const bool considerPreviousTimeStep =
false)
const
260 assert(!(considerPreviousTimeStep && !this->isTransient_));
261 bindCouplingContext_(Dune::index_constant<freeFlowMomentumIndex>(), element, scv.elementIndex());
265 const auto eIdx = scv.elementIndex();
266 const auto& scvI = this->momentumCouplingContext_()[0].fvGeometry.scv(eIdx);
268 const auto& volVars = considerPreviousTimeStep ?
269 this->momentumCouplingContext_()[0].prevElemVolVars[scvI]
270 : this->momentumCouplingContext_()[0].curElemVolVars[scvI];
272 return volVars.density();
278 using ShapeValue =
typename Dune::FieldVector<Scalar, 1>;
279 const auto& localBasis = this->momentumCouplingContext_()[0].fvGeometry.feLocalBasis();
280 std::vector<ShapeValue> shapeValues;
281 const auto ipLocal = element.geometry().local(scv.dofPosition());
282 localBasis.evaluateFunction(ipLocal, shapeValues);
285 for (
const auto& scvI : scvs(this->momentumCouplingContext_()[0].fvGeometry))
287 const auto& volVars = considerPreviousTimeStep ?
288 this->momentumCouplingContext_()[0].prevElemVolVars[scvI]
289 : this->momentumCouplingContext_()[0].curElemVolVars[scvI];
290 rho += volVars.density()*shapeValues[scvI.indexInElement()][0];
295 DUNE_THROW(Dune::NotImplemented,
296 "Density interpolation for discretization scheme " << MassDiscretizationMethod{}
304 const FVElementGeometry<freeFlowMomentumIndex>& fvGeometry,
305 const SubControlVolumeFace<freeFlowMomentumIndex>& scvf,
306 const bool considerPreviousTimeStep =
false)
const
308 assert(!(considerPreviousTimeStep && !this->isTransient_));
309 bindCouplingContext_(Dune::index_constant<freeFlowMomentumIndex>(), element, fvGeometry.elementIndex());
313 const auto eIdx = fvGeometry.elementIndex();
314 const auto& scv = this->momentumCouplingContext_()[0].fvGeometry.scv(eIdx);
315 const auto& volVars = considerPreviousTimeStep ?
316 this->momentumCouplingContext_()[0].prevElemVolVars[scv]
317 : this->momentumCouplingContext_()[0].curElemVolVars[scv];
318 return volVars.viscosity();
324 using ShapeValue =
typename Dune::FieldVector<Scalar, 1>;
325 const auto& localBasis = this->momentumCouplingContext_()[0].fvGeometry.feLocalBasis();
326 std::vector<ShapeValue> shapeValues;
327 const auto ipLocal = element.geometry().local(scvf.ipGlobal());
328 localBasis.evaluateFunction(ipLocal, shapeValues);
331 for (
const auto& scv : scvs(this->momentumCouplingContext_()[0].fvGeometry))
333 const auto& volVars = considerPreviousTimeStep ?
334 this->momentumCouplingContext_()[0].prevElemVolVars[scv]
335 : this->momentumCouplingContext_()[0].curElemVolVars[scv];
336 mu += volVars.viscosity()*shapeValues[scv.indexInElement()][0];
342 DUNE_THROW(Dune::NotImplemented,
343 "Viscosity interpolation for discretization scheme " << MassDiscretizationMethod{}
351 const FVElementGeometry<freeFlowMomentumIndex>& fvGeometry,
352 const SubControlVolume<freeFlowMomentumIndex>& scv,
353 const bool considerPreviousTimeStep =
false)
const
355 assert(!(considerPreviousTimeStep && !this->isTransient_));
356 bindCouplingContext_(Dune::index_constant<freeFlowMomentumIndex>(), element, fvGeometry.elementIndex());
360 const auto eIdx = fvGeometry.elementIndex();
361 const auto& scvI = this->momentumCouplingContext_()[0].fvGeometry.scv(eIdx);
362 const auto& volVars = considerPreviousTimeStep ?
363 this->momentumCouplingContext_()[0].prevElemVolVars[scvI]
364 : this->momentumCouplingContext_()[0].curElemVolVars[scvI];
365 return volVars.viscosity();
371 using ShapeValue =
typename Dune::FieldVector<Scalar, 1>;
372 const auto& localBasis = this->momentumCouplingContext_()[0].fvGeometry.feLocalBasis();
373 std::vector<ShapeValue> shapeValues;
374 const auto ipLocal = element.geometry().local(scv.dofPosition());
375 localBasis.evaluateFunction(ipLocal, shapeValues);
378 for (
const auto& scvI : scvs(this->momentumCouplingContext_()[0].fvGeometry))
380 const auto& volVars = considerPreviousTimeStep ?
381 this->momentumCouplingContext_()[0].prevElemVolVars[scvI]
382 : this->momentumCouplingContext_()[0].curElemVolVars[scvI];
383 mu += volVars.viscosity()*shapeValues[scvI.indexInElement()][0];
389 DUNE_THROW(Dune::NotImplemented,
390 "Viscosity interpolation for discretization scheme " << MassDiscretizationMethod{}
398 const SubControlVolumeFace<freeFlowMassIndex>& scvf)
const
403 bindCouplingContext_(Dune::index_constant<freeFlowMassIndex>(), element, eIdx);
405 const auto& fvGeometry = this->massAndEnergyCouplingContext_()[0].fvGeometry;
406 const auto& localBasis = fvGeometry.feLocalBasis();
408 std::vector<ShapeValue> shapeValues;
409 const auto ipLocal = element.geometry().local(scvf.ipGlobal());
410 localBasis.evaluateFunction(ipLocal, shapeValues);
413 VelocityVector velocity(0.0);
414 for (
const auto& scv : scvs(fvGeometry))
415 velocity.axpy(shapeValues[scv.localDofIndex()][0], this->curSol(
freeFlowMomentumIndex)[scv.dofIndex()]);
423 VelocityVector
elementVelocity(
const FVElementGeometry<freeFlowMassIndex>& fvGeometry)
const
425 bindCouplingContext_(Dune::index_constant<freeFlowMassIndex>(), fvGeometry.element());
427 const auto& momentumFvGeometry = this->massAndEnergyCouplingContext_()[0].fvGeometry;
428 const auto& localBasis = momentumFvGeometry.feLocalBasis();
431 VelocityVector velocity(0.0);
432 std::vector<ShapeValue> shapeValues;
433 localBasis.evaluateFunction(referenceElement(fvGeometry.element()).position(0,0), shapeValues);
435 for (
const auto& scv : scvs(momentumFvGeometry))
436 velocity.axpy(shapeValues[scv.localDofIndex()][0], this->curSol(
freeFlowMomentumIndex)[scv.dofIndex()]);
445 template<std::
size_t j>
446 const CouplingStencilType&
couplingStencil(Dune::index_constant<freeFlowMomentumIndex> domainI,
447 const Element<freeFlowMomentumIndex>& elementI,
448 const SubControlVolume<freeFlowMomentumIndex>& scvI,
449 Dune::index_constant<j> domainJ)
const
450 {
return emptyStencil_; }
466 const CouplingStencilType&
couplingStencil(Dune::index_constant<freeFlowMassIndex> domainI,
467 const Element<freeFlowMassIndex>& elementI,
468 Dune::index_constant<freeFlowMomentumIndex> domainJ)
const
471 return massAndEnergyToMomentumStencils_[eIdx];
482 const CouplingStencilType&
couplingStencil(Dune::index_constant<freeFlowMomentumIndex> domainI,
483 const Element<freeFlowMomentumIndex>& elementI,
484 Dune::index_constant<freeFlowMassIndex> domainJ)
const
487 return momentumToMassAndEnergyStencils_[eIdx];
516 template<std::
size_t i, std::
size_t j,
class LocalAssemblerI>
518 const LocalAssemblerI& localAssemblerI,
519 Dune::index_constant<j> domainJ,
520 std::size_t dofIdxGlobalJ,
521 const PrimaryVariables<j>& priVarsJ,
524 this->
curSol(domainJ)[dofIdxGlobalJ][pvIdxJ] = priVarsJ[pvIdxJ];
530 bindCouplingContext_(domainI, localAssemblerI.element());
533 const auto& deflectedElement =
problem.gridGeometry().element(dofIdxGlobalJ);
535 const auto& fvGeometry = momentumCouplingContext_()[0].fvGeometry;
536 const auto& scv = fvGeometry.scv(dofIdxGlobalJ);
538 if constexpr (ElementVolumeVariables<freeFlowMassIndex>::GridVolumeVariables::cachingEnabled)
539 gridVars_(
freeFlowMassIndex).curGridVolVars().volVars(scv).update(std::move(elemSol),
problem, deflectedElement, scv);
541 momentumCouplingContext_()[0].curElemVolVars[scv].update(std::move(elemSol),
problem, deflectedElement, scv);
549 bindCouplingContext_(domainI, localAssemblerI.element());
552 const auto& deflectedElement =
problem.gridGeometry().element(this->momentumCouplingContext_()[0].eIdx);
554 const auto& fvGeometry = this->momentumCouplingContext_()[0].fvGeometry;
556 for (
const auto& scv : scvs(fvGeometry))
558 if(scv.dofIndex() == dofIdxGlobalJ)
560 if constexpr (ElementVolumeVariables<freeFlowMassIndex>::GridVolumeVariables::cachingEnabled)
561 this->gridVars_(
freeFlowMassIndex).curGridVolVars().volVars(scv).update(std::move(elemSol),
problem, deflectedElement, scv);
563 this->momentumCouplingContext_()[0].curElemVolVars[scv].update(std::move(elemSol),
problem, deflectedElement, scv);
569 DUNE_THROW(Dune::NotImplemented,
570 "Context update for discretization scheme " << MassDiscretizationMethod{}
600 template<std::
size_t i,
class AssembleElementFunc>
603 if (elementSets_.empty())
604 DUNE_THROW(Dune::InvalidStateException,
"Call computeColorsForAssembly before assembling in parallel!");
611 for (
const auto& elements : elementSets_)
615 const auto element = grid.entity(elements[eIdx]);
616 assembleElement(element);
622 void bindCouplingContext_(Dune::index_constant<freeFlowMomentumIndex> domainI,
623 const Element<freeFlowMomentumIndex>& elementI)
const
626 if (momentumCouplingContext_().empty())
629 bindCouplingContext_(domainI, elementI, momentumCouplingContext_()[0].fvGeometry.gridGeometry().elementMapper().index(elementI));
632 void bindCouplingContext_(Dune::index_constant<freeFlowMomentumIndex> domainI,
633 const Element<freeFlowMomentumIndex>& elementI,
634 const std::size_t eIdx)
const
636 if (momentumCouplingContext_().empty())
639 fvGeometry.bind(elementI);
648 prevElemVolVars.bindElement(elementI, fvGeometry, (*prevSol_)[
freeFlowMassIndex]);
650 momentumCouplingContext_().emplace_back(MomentumCouplingContext{std::move(fvGeometry), std::move(curElemVolVars), std::move(prevElemVolVars), eIdx});
652 else if (eIdx != momentumCouplingContext_()[0].eIdx)
654 momentumCouplingContext_()[0].eIdx = eIdx;
655 momentumCouplingContext_()[0].fvGeometry.bind(elementI);
656 momentumCouplingContext_()[0].curElemVolVars.bind(elementI, momentumCouplingContext_()[0].fvGeometry, this->
curSol(
freeFlowMassIndex));
659 momentumCouplingContext_()[0].prevElemVolVars.bindElement(elementI, momentumCouplingContext_()[0].fvGeometry, (*prevSol_)[
freeFlowMassIndex]);
663 void bindCouplingContext_(Dune::index_constant<freeFlowMassIndex> domainI,
664 const Element<freeFlowMassIndex>& elementI)
const
667 if (massAndEnergyCouplingContext_().empty())
668 bindCouplingContext_(domainI, elementI, this->
problem(
freeFlowMassIndex).gridGeometry().elementMapper().index(elementI));
670 bindCouplingContext_(domainI, elementI, massAndEnergyCouplingContext_()[0].fvGeometry.gridGeometry().elementMapper().index(elementI));
673 void bindCouplingContext_(Dune::index_constant<freeFlowMassIndex> domainI,
674 const Element<freeFlowMassIndex>& elementI,
675 const std::size_t eIdx)
const
677 if (massAndEnergyCouplingContext_().empty())
680 auto fvGeometry =
localView(gridGeometry);
681 fvGeometry.bindElement(elementI);
682 massAndEnergyCouplingContext_().emplace_back(std::move(fvGeometry), eIdx);
684 else if (eIdx != massAndEnergyCouplingContext_()[0].eIdx)
686 massAndEnergyCouplingContext_()[0].eIdx = eIdx;
687 massAndEnergyCouplingContext_()[0].fvGeometry.bindElement(elementI);
695 template<std::
size_t i>
696 const GridVariables<i>& gridVars_(Dune::index_constant<i> domainIdx)
const
698 if (std::get<i>(gridVariables_))
699 return *std::get<i>(gridVariables_);
701 DUNE_THROW(Dune::InvalidStateException,
"The gridVariables pointer was not set. Use setGridVariables() before calling this function");
708 template<std::
size_t i>
709 GridVariables<i>& gridVars_(Dune::index_constant<i> domainIdx)
711 if (std::get<i>(gridVariables_))
712 return *std::get<i>(gridVariables_);
714 DUNE_THROW(Dune::InvalidStateException,
"The gridVariables pointer was not set. Use setGridVariables() before calling this function");
718 void computeCouplingStencils_()
722 auto momentumFvGeometry =
localView(momentumGridGeometry);
723 auto massFvGeometry =
localView(massGridGeometry);
725 massAndEnergyToMomentumStencils_.clear();
726 massAndEnergyToMomentumStencils_.resize(massGridGeometry.gridView().size(0));
728 momentumToMassAndEnergyStencils_.clear();
729 momentumToMassAndEnergyStencils_.resize(momentumGridGeometry.gridView().size(0));
731 assert(massAndEnergyToMomentumStencils_.size() == momentumToMassAndEnergyStencils_.size());
733 for (
const auto& element : elements(momentumGridGeometry.gridView()))
735 momentumFvGeometry.bindElement(element);
736 massFvGeometry.bindElement(element);
737 const auto eIdx = momentumFvGeometry.elementIndex();
739 for (
const auto& scv : scvs(momentumFvGeometry))
740 massAndEnergyToMomentumStencils_[eIdx].push_back(scv.dofIndex());
742 for (
const auto& scv : scvs(massFvGeometry))
743 momentumToMassAndEnergyStencils_[eIdx].push_back(scv.dofIndex());
747 CouplingStencilType emptyStencil_;
748 std::vector<CouplingStencilType> momentumToMassAndEnergyStencils_;
749 std::vector<CouplingStencilType> massAndEnergyToMomentumStencils_;
751 std::vector<MomentumCouplingContext>& momentumCouplingContext_()
const
752 {
return momentumCouplingContextImpl_; }
754 std::vector<MassAndEnergyCouplingContext>& massAndEnergyCouplingContext_()
const
755 {
return massAndEnergyCouplingContextImpl_; }
757 mutable std::vector<MassAndEnergyCouplingContext> massAndEnergyCouplingContextImpl_;
758 mutable std::vector<MomentumCouplingContext> momentumCouplingContextImpl_;
761 GridVariablesTuple gridVariables_;
763 const SolutionVector* prevSol_;
766 std::deque<std::vector<ElementSeed<freeFlowMomentumIndex>>> elementSets_;
772template<class Traits, class DiscretizationMethod = typename Detail::MomentumDiscretizationMethod<Traits>::type>
776template<
class Traits,
class D>
778{
using type = std::false_type; };
The interface of the coupling manager for free flow systems.
Definition couplingmanager_cvfe.hh:50
VelocityVector faceVelocity(const Element< freeFlowMassIndex > &element, const SubControlVolumeFace< freeFlowMassIndex > &scvf) const
Returns the velocity at a given sub control volume face.
Definition couplingmanager_cvfe.hh:397
void init(std::shared_ptr< Problem< freeFlowMomentumIndex > > momentumProblem, std::shared_ptr< Problem< freeFlowMassIndex > > massProblem, GridVariablesTuple &&gridVariables, const SolutionVector &curSol)
Methods to be accessed by main.
Definition couplingmanager_cvfe.hh:121
void init(std::shared_ptr< Problem< freeFlowMomentumIndex > > momentumProblem, std::shared_ptr< Problem< freeFlowMassIndex > > massProblem, GridVariablesTuple &&gridVariables, const typename ParentType::SolutionVectorStorage &curSol)
use as binary coupling manager in multi model context
Definition couplingmanager_cvfe.hh:149
Scalar effectiveViscosity(const Element< freeFlowMomentumIndex > &element, const FVElementGeometry< freeFlowMomentumIndex > &fvGeometry, const SubControlVolume< freeFlowMomentumIndex > &scv, const bool considerPreviousTimeStep=false) const
Returns the effective viscosity at a given sub control volume.
Definition couplingmanager_cvfe.hh:350
static constexpr auto freeFlowMomentumIndex
Definition couplingmanager_cvfe.hh:53
static constexpr auto pressureIdx
Definition couplingmanager_cvfe.hh:113
const CouplingStencilType & couplingStencil(Dune::index_constant< freeFlowMassIndex > domainI, const Element< freeFlowMassIndex > &elementI, Dune::index_constant< freeFlowMomentumIndex > domainJ) const
returns an iterable container of all indices of degrees of freedom of domain j that couple with / inf...
Definition couplingmanager_cvfe.hh:466
const CouplingStencilType & couplingStencil(Dune::index_constant< freeFlowMomentumIndex > domainI, const Element< freeFlowMomentumIndex > &elementI, Dune::index_constant< freeFlowMassIndex > domainJ) const
returns an iterable container of all indices of degrees of freedom of domain j that couple with / inf...
Definition couplingmanager_cvfe.hh:482
Scalar density(const Element< freeFlowMomentumIndex > &element, const FVElementGeometry< freeFlowMomentumIndex > &fvGeometry, const SubControlVolumeFace< freeFlowMomentumIndex > &scvf, const bool considerPreviousTimeStep=false) const
Returns the density at a given sub control volume face.
Definition couplingmanager_cvfe.hh:206
Scalar effectiveViscosity(const Element< freeFlowMomentumIndex > &element, const FVElementGeometry< freeFlowMomentumIndex > &fvGeometry, const SubControlVolumeFace< freeFlowMomentumIndex > &scvf, const bool considerPreviousTimeStep=false) const
Returns the effective viscosity at a given sub control volume face.
Definition couplingmanager_cvfe.hh:303
VelocityVector elementVelocity(const FVElementGeometry< freeFlowMassIndex > &fvGeometry) const
Returns the velocity at the element center.
Definition couplingmanager_cvfe.hh:423
Scalar density(const Element< freeFlowMomentumIndex > &element, const FVElementGeometry< freeFlowMomentumIndex > &fvGeometry, const SubControlVolume< freeFlowMomentumIndex > &scv, const bool considerPreviousTimeStep=false) const
Returns the density at a given sub control volume.
Definition couplingmanager_cvfe.hh:255
Scalar pressure(const Element< freeFlowMomentumIndex > &element, const FVElementGeometry< freeFlowMomentumIndex > &fvGeometry, const SubControlVolume< freeFlowMomentumIndex > &scv, const bool considerPreviousTimeStep=false) const
Returns the pressure at a given sub control volume.
Definition couplingmanager_cvfe.hh:190
void assembleMultithreaded(Dune::index_constant< i > domainId, AssembleElementFunc &&assembleElement) const
Execute assembly kernel in parallel.
Definition couplingmanager_cvfe.hh:601
Scalar pressure(const Element< freeFlowMomentumIndex > &element, const FVElementGeometry< freeFlowMomentumIndex > &fvGeometry, const SubControlVolumeFace< freeFlowMomentumIndex > &scvf, const bool considerPreviousTimeStep=false) const
Returns the pressure at a given sub control volume face.
Definition couplingmanager_cvfe.hh:174
void init(std::shared_ptr< Problem< freeFlowMomentumIndex > > momentumProblem, std::shared_ptr< Problem< freeFlowMassIndex > > massProblem, GridVariablesTuple &&gridVariables, const SolutionVector &curSol, const SolutionVector &prevSol)
use as regular coupling manager in a transient setting
Definition couplingmanager_cvfe.hh:137
void computeColorsForAssembly()
Compute colors for multithreaded assembly.
Definition couplingmanager_cvfe.hh:579
static constexpr auto freeFlowMassIndex
Definition couplingmanager_cvfe.hh:54
const CouplingStencilType & couplingStencil(Dune::index_constant< freeFlowMomentumIndex > domainI, const Element< freeFlowMomentumIndex > &elementI, const SubControlVolume< freeFlowMomentumIndex > &scvI, Dune::index_constant< j > domainJ) const
The coupling stencil of domain I, i.e. which domain J DOFs the given domain I element's residual depe...
Definition couplingmanager_cvfe.hh:446
typename ParentType::SolutionVectorStorage SolutionVectorStorage
Definition couplingmanager_cvfe.hh:58
void attachSolution(const SolutionVectorStorage &curSol)
Attach a solution vector stored outside of this class.
Definition multidomain/couplingmanager.hh:310
void setSubProblems(const std::tuple< std::shared_ptr< SubProblems >... > &problems)
set the pointers to the sub problems
Definition multidomain/couplingmanager.hh:275
const Problem< i > & problem(Dune::index_constant< i > domainIdx) const
Return a reference to the sub problem.
Definition multidomain/couplingmanager.hh:297
SubSolutionVector< i > & curSol(Dune::index_constant< i > domainIdx)
the solution vector of the subproblem
Definition multidomain/couplingmanager.hh:326
void updateSolution(const SolutionVector &curSol)
Updates the entire solution vector, e.g. before assembly or after grid adaption Overload might want t...
Definition multidomain/couplingmanager.hh:207
CouplingManager()
Default constructor.
Definition multidomain/couplingmanager.hh:70
typename Traits::template TupleOfSharedPtr< SubSolutionVector > SolutionVectorStorage
the type in which the solution vector is stored in the manager
Definition multidomain/couplingmanager.hh:59
Coloring schemes for shared-memory-parallel assembly.
Defines all properties used in Dumux.
Element solution classes and factory functions.
free functions for the evaluation of primary variables inside elements.
GridCache::LocalView localView(const GridCache &gridCache)
Free function to get the local view of a grid cache object.
Definition localview.hh:26
PrimaryVariables evalSolution(const Element &element, const typename Element::Geometry &geometry, const typename FVElementGeometry::GridGeometry &gridGeometry, const CVFEElementSolution< FVElementGeometry, PrimaryVariables > &elemSol, const typename Element::Geometry::GlobalCoordinate &globalPos, bool ignoreState=false)
Interpolates a given box element solution at a given global position. Uses the finite element cache o...
Definition evalsolution.hh:152
auto elementSolution(const Element &element, const SolutionVector &sol, const GridGeometry &gg) -> std::enable_if_t< GridGeometry::discMethod==DiscretizationMethods::cctpfa||GridGeometry::discMethod==DiscretizationMethods::ccmpfa, CCElementSolution< typename GridGeometry::LocalView, std::decay_t< decltype(std::declval< SolutionVector >()[0])> > >
Make an element solution for cell-centered schemes.
Definition cellcentered/elementsolution.hh:101
void updateCouplingContext(Dune::index_constant< i > domainI, const LocalAssemblerI &localAssemblerI, Dune::index_constant< j > domainJ, std::size_t dofIdxGlobalJ, const PrimaryVariables< j > &priVarsJ, int pvIdxJ)
updates all data and variables that are necessary to evaluate the residual of the element of domain i...
Definition couplingmanager_cvfe.hh:517
void parallelFor(const std::size_t count, const FunctorType &functor)
A parallel for loop (multithreading)
Definition parallel_for.hh:160
typename GetProp< TypeTag, Property >::type GetPropType
get the type alias defined in the property
Definition propertysystem.hh:296
The available discretization methods in Dumux.
The interface of the coupling manager for multi domain problems.
A linear system assembler (residual and Jacobian) for finite volume schemes with multiple domains.
Distance implementation details.
Definition cvfelocalresidual.hh:25
constexpr FCDiamond fcdiamond
Definition method.hh:152
constexpr CCTpfa cctpfa
Definition method.hh:145
constexpr Box box
Definition method.hh:147
auto computeColoring(const GridGeometry &gg, int verbosity=1)
Compute iterable lists of element seeds partitioned by color.
Definition coloring.hh:239
Parallel for loop (multithreading)
Type trait that is specialized for coupling manager supporting multithreaded assembly.
Definition multistagemultidomainfvassembler.hh:78
std::false_type type
Definition couplingmanager_cvfe.hh:778
Definition couplingmanager_cvfe.hh:773