integration of experimental data by spline interpolation
v = intsplin(y) v = intsplin(x, y)
Vector of increasing real abscissae. It must have the length of
y
. Default values are 1:size(y,'*')
.
vector of real or complex ordinates.
value of the integral. If y
are complex numbers, the
real and imaginary parts are integrated separately.
Let f
be a function defined at some given sampled experimental points
(xi, yi=f(xi))
.
intsplin
computes an approximate of integral{f(x).dx}
from x0=x(1)
to x1=x($)
.
Between given points, f
is approximated using a spline interpolation.
t = 0:0.1:%pi intsplin(t,sin(t)) intsplin(1:5) // 12 x = 0:0.1:0.4; intsplin(x, 1:5) // 1.2 intsplin((1:5)*%i) // 12i intsplin(x, (1:5)*%i) // 1.2i intsplin(x, x+(1:5)*%i) // 0.08 + 1.2i | ![]() | ![]() |